
Publications on Parma Microbiota Project
TAXONOMIC AND METABOLIC DEVELOPMENT OF THE HUMAN GUT MICROBIOME ACROSS LIFE STAGES: A WORLDWIDE METAGENOMIC INVESTIGATION
Leonardo Mancabelli, Christian Milani, Rosita De Biase, Fabiana Bocchio, Federico Fontana, Gabriele Andrea Lugli, Giulia Alessandri, Chiara Tarracchini, Alice Viappiani, Flora De Conto, Antonio Nouvenne, Andrea Ticinesi, Ovidio Bussolati, Tiziana Meschi, Rossana Cecchi, Francesca Turroni, Marco Ventura
Abstract
The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host's nervous and immune systems.
Heart rate variability, daily cortisol indices and their association with psychometric characteristics and gut microbiota composition in an Italian community sample
Abstract
The microbiota–gut–brain axis is a complex communication system that plays a crucial role in influencing various aspects of our physical and mental health. The goal of this study was to determine the extent to which individual differences in resting measures of vagally-mediated heart rate variability (HRV) and cortisol levels were associated with psychometric and specific gut microbiota characteristics in seventy-five (38 females) healthy individuals. Participants were assessed for vagally-mediated HRV, daily salivary cortisol levels, psychometric characteristics, and gut microbiota composition. Using a categorical approach based on the median split of HRV and cortisol values, we identified an association between low vagally-mediated HRV, greater depressive symptomatology, and altered gut microbiota (e.g., a higher abundance of Prevotella and a smaller abundance of Faecalibacterium, Alistipes, and Gemmiger). This suggests that vagally-mediated HRV may be a useful biomarker of microbiota-gut brain axis function, and that low vagally-mediated HRV may play an important role in the bidirectional link between gut dysbiosis and depression. On the other hand, daily cortisol parameters (e.g., cortisol awakening response, diurnal cortisol slope) were associated either with higher anxiety and perceived stress, or with a specific gut microbiota profile. Therefore, their utility as biomarkers of microbiota-gut-brain axis function needs further scrutiny.